A Comparison of the Performance and Power Requirements for Switchable Damper and Active Suspension Systems

Aref M.A. Soliman
Department of Mechanical Engineering
Benha University
Benha, Egypt
aref_soliman4@yahoo.com

Mahmoud A.H. Galal
Department of Mechanical Engineering
Benha University
Benha, Egypt
mabdulazizgalal@gmail.com

Nader A. Mansour
Department of Mechanical Engineering
Benha University
Benha, Egypt
naderabdelwahab@gmail.com

Abstract

In this paper, the full-car model for passive suspension system (PSS), switchable damper suspension system (SDSS) and active suspension system (ASS) are compared in terms of their relative power requirements and ride performance. The linear quadratic regulator (LQR) and Fuzzy logic control (FLC) strategies are used for the system behavior and compared relative to the PSS. The PSS, SDSS, and ASS are evaluated in terms of ride performance criteria. The optimal suspension parameters values are evaluated. The results revealed that the ASS with the LQR control strategy gives better ride performance compared with PSS and SDSS. The ASS with the FLC strategy gives the best ride performance compared with the ASS using LQR control, and SDSS with LQR and FLC strategies. The mean power demand ($\overline{\mathbf{P}}_{\text {Dem }}$) and dissipation ($\overline{\mathbf{P}}_{\text {Diss }}$) within the suspension systems are evaluated and discussed.

Index Terms- Active suspension system (ASS), Fuzzy control (FLC), LQR control, Ride performance, Switchable damper (SD).

I. Introduction

THE ASS is one in which a hydraulic or pneumatic actuator is utilized in the suspension system in conjunction with or as a replacement for the PSS. It is evident that ASS possess considerable potential for improving vehicle ride and handling compared with other intelligent suspension systems [1-2]. In spite of the performance results of the theoretical ASS studies, its utilization is limited to some prototype vehicles due to its increased cost, complexity coupled with high energy consumption [3-4]. Soliman et al [5] developed a mathematical model for the twin spring system using a halfcar model for PSS to study the effect of front and rear spring stiffness on the vehicle dynamics. Their results revealed that the measured values of the vertical acceleration and suspension working space were 8% to 10% higher than those predicted. Giliome et al [6] concerned their study with the development of a semi-active hydro-pneumatic spring and damper system to enhance the ride comfort and handling. A test-rig of single degree of freedom (DOF) with a body mass of 3 tons was used. They concluded that by utilizing the semiactive hydro-pneumatic spring with a high and low spring rate a suspension system that is optimized for both handling and
ride comfort can be achieved. Heo et al [7] concerned their study with the continuously variable damper; the impact of the damper characteristics changes upon ride comfort and driving safety have been examined via simulation. Their results indicated that the soft damping force limit affects the performance of the semi-active suspension system (SASS) more than the hard limit. Hence the design parameters that affect the soft damping limit must get more attention than others.

Soliman [8] analyzed the effect of the SDSS on vehicle ride quality control. The simulation results indicated that the SDSS with adaptive control is superior compared with the PSS. An improvement of 20% of the root mean square (RMS) of vehicle vertical acceleration is achieved using the SDSS with adaptive control. The power dissipation ($\mathrm{P}_{\mathrm{Diss}}$) in suspension relative to power consumed in rolling resistance for the SDSS is discussed. Other researchers studied the effect of SDSS, SASS, and ASS on the vehicle ride performance [9-14], however, their research concentrated on the linear optimal control theory and adaptive control using a quarter or halfvehicle model. In this paper, the LQR and FLC strategies are used for the system's behavior using the full-car model. Also, the $\overline{\mathrm{P}}_{\text {Dem }}$ and $\overline{\mathrm{P}}_{\text {Dem }}$ within the suspension systems are assessed and discussed.

II. Mathematical Model

1) Three-setting SDSS Model

The SDSS for a full-car model is shown in Fig. 1.

Fig. 1. SDSS for full-car model

The equations of motion (EOM) can be written in the matrix form as follows;

$$
\left.\begin{array}{c}
-k_{s r l} \tag{1}\\
-\frac{B}{2} \cdot k_{s r l} \\
-L_{r} \cdot k_{s r l} \\
0 \\
0 \\
0 \\
k_{s r l}+k_{t r l}
\end{array}\right]\left[\begin{array}{c}
z_{b} \\
\phi_{b} \\
\theta_{b} \\
z_{w f r} \\
z_{w f l} \\
z_{w r l} \\
z_{w r l}
\end{array}\right]=\left[\begin{array}{c}
F_{s f r}+F_{s f l}+F_{s r r}+F_{s r l} \\
\frac{B}{2}\left(F_{s r l}+F_{s f l}\right)-\frac{B}{2}\left(F_{s r r}+F_{s f r}\right) \\
-L_{f}\left(F_{s f r}+F_{s f l}\right)+L_{r}\left(F_{s r r}+F_{s r l}\right) \\
k_{t f r} \cdot z_{o f r} \\
k_{t f l} \cdot z_{o f l} \\
k_{\text {trr }}: Z_{\text {orr }} \\
k_{t r l} \cdot z_{o r l}
\end{array}\right]
$$

2) ASS Model

The ASS for a full-car model is shown in Fig. 2.

Fig. 2. The ASS for full-car model

$$
\begin{aligned}
& {\left[\begin{array}{ccccccc}
M_{b} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I_{b x} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & I_{b y} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & M_{w f r} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & M_{w f l} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & M_{w r r} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & M_{w r l}
\end{array}\right]\left[\begin{array}{c}
\ddot{z}_{b} \\
\ddot{\phi}_{b} \\
\ddot{\theta}_{b} \\
\ddot{z}_{w f r} \\
\ddot{z}_{w f l} \\
\ddot{z}_{w r r} \\
\ddot{z}_{w r l}
\end{array}\right]} \\
& +\left[\begin{array}{ccc}
c_{s f l}+c_{s f r}+c_{s r l}+c_{s r r} & \frac{B}{2} \cdot c_{s f l}-\frac{B}{2} \cdot c_{s f r}+\frac{B}{2} \cdot c_{s r l}-\frac{B}{2} \cdot c_{s r r} & \ldots \\
\frac{B}{2} \cdot c_{s f l}-\frac{B}{2} \cdot c_{s f r}+\frac{B}{2} \cdot c_{s r l}-\frac{B}{2} \cdot c_{s r r} & \left(\frac{B}{2}\right)^{2} c_{s f l}+\left(\frac{B}{2}\right)^{2} c_{s f r}+\left(\frac{B}{2}\right)^{2} c_{s r l}+\left(\frac{B}{2}\right)^{2} c_{s r r} & \ldots \\
-L_{f} \cdot c_{s f l}-L_{f} \cdot c_{s f r}+L_{r} \cdot c_{s r l}+L_{r} \cdot c_{s r r} & -\frac{B}{2} L_{f} \cdot c_{s f l}+\frac{B}{2} L_{f} \cdot c_{s f r}+\frac{B}{2} L_{r} \cdot c_{s r l}-\frac{B}{2} L_{r} \cdot c_{s r r} & \ldots \\
-c_{s f r} & \frac{B}{2} \cdot c_{s f r} & \ldots \\
-c_{s f l} & -\frac{B}{2} \cdot c_{s f l} & \ldots \\
-c_{s r r} & \frac{B}{2} \cdot c_{s r r} & \ldots \\
-c_{s r l} & -\frac{B}{2} \cdot c_{s r l} & \ldots \\
& \ldots
\end{array}\right. \\
& \left.\begin{array}{ccccc}
-L_{f} \cdot c_{s f l}-L_{f} \cdot c_{s f r}+L_{r} \cdot c_{s r l}+L_{r} \cdot c_{s r r} & -c_{s f r} & -c_{s f l} & -c_{s r r} & -c_{s r l} \\
-\frac{B}{2} L_{f} \cdot c_{s f l}+\frac{B}{2} L_{f} \cdot c_{s f r}+\frac{B}{2} L_{r} \cdot c_{s r l}-\frac{B}{2} L_{r} \cdot c_{s r r} & \frac{B}{2} \cdot c_{s f r} & -\frac{B}{2} \cdot c_{s f l} & \frac{B}{2} \cdot c_{s r r} & -\frac{B}{2} \cdot c_{s r l} \\
L_{f}{ }^{2} \cdot c_{s f l}+L_{f}{ }^{2} \cdot c_{s f r}+L_{r}{ }^{2} \cdot c_{s r l}+L_{r}{ }^{2} \cdot c_{s r r} & L_{f} \cdot c_{s f r} & L_{f} \cdot c_{s f l} & -L_{r} \cdot c_{s r r} & -L_{r} \cdot c_{s r l} \\
L_{f} \cdot c_{s f r} & c_{s f r} & 0 & 0 & 0 \\
L_{f} \cdot c_{s f l} & 0 & c_{s f l} & 0 & 0 \\
-L_{r} \cdot c_{s r r} & 0 & 0 & c_{s r r} & 0 \\
-L_{r} \cdot c_{s r l} & 0 & 0 & 0 & c_{s r l}
\end{array}\right]\left[\begin{array}{c}
\dot{z}_{b} \\
\dot{\phi}_{b} \\
\dot{\theta}_{b} \\
\dot{z}_{w f r} \\
\dot{z}_{w f l} \\
\dot{z}_{w r r} \\
\dot{z}_{w r l}
\end{array}\right]
\end{aligned}
$$

The EOM can be written in the matrix form as follows;
$\left[\begin{array}{ccccccc}M_{b} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & I_{b x} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & I_{b y} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & M_{w f r} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & M_{w f l} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & M_{w r r} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & M_{w r l}\end{array}\right]\left[\begin{array}{c}\ddot{z}_{b} \\ \ddot{\phi}_{b} \\ \ddot{\theta}_{b} \\ \ddot{z}_{w f r} \\ \ddot{z}_{w f l} \\ \ddot{z}_{w r r} \\ \ddot{z}_{w r l}\end{array}\right]$
$+\left[\begin{array}{ccc}k_{s f l}+k_{s f r}+k_{s r l}+k_{s r r} & \frac{B}{2} \cdot k_{s f l}-\frac{B}{2} \cdot k_{s f r}+\frac{B}{2} \cdot k_{s r l}-\frac{B}{2} \cdot k_{s r r} & \ldots \\ \frac{B}{2} \cdot k_{s f l}-\frac{B}{2} \cdot k_{s f r}+\frac{B}{2} \cdot k_{s r l}-\frac{B}{2} \cdot k_{s r r} & \left(\frac{B}{2}\right)^{2} k_{s f l}+\left(\frac{B}{2}\right)^{2} k_{s f r}+\left(\frac{B}{2}\right)^{2} k_{s r l}+\left(\frac{B}{2}\right)^{2} k_{s r r} & \ldots \\ -L_{f} \cdot k_{s f l}-L_{f} \cdot k_{s f r}+L_{r} \cdot k_{s r l}+L_{r} \cdot k_{s r r} & -\frac{B}{2} L_{f} \cdot k_{s f l}+\frac{B}{2} L_{f} \cdot k_{s f r}+\frac{B}{2} L_{r} \cdot k_{s r l}-\frac{B}{2} L_{r} \cdot k_{s r r} & \ldots \\ -k_{s f r} & \frac{B}{2} \cdot k_{s f r} & \ldots \\ -k_{s f l} & -\frac{B}{2} \cdot k_{s f l} & \ldots \\ -k_{s r r} & \frac{B}{2} \cdot k_{s r r} & \ldots \\ -k_{s r l} & -\frac{B}{2} \cdot k_{s r l} & \ldots\end{array}\right.$

$$
\begin{array}{ccccc}
-L_{f} \cdot k_{s f l}-L_{f} \cdot k_{s f r}+L_{r} \cdot k_{s r l}+L_{r} \cdot k_{s r r} & -k_{s f r} & -k_{s f l} & -k_{s r r} & \ldots \\
-\frac{B}{2} L_{f} \cdot k_{s f l}+\frac{B}{2} L_{r} \cdot k_{s r l}+\frac{B}{2} L_{f} \cdot k_{s f r}-\frac{B}{2} L_{r} \cdot k_{s r r} & \frac{B}{2} \cdot k_{s f r} & -\frac{B}{2} \cdot k_{s f l} & \frac{B}{2} \cdot k_{s r r} & \ldots \\
L_{f}{ }^{2} \cdot k_{s f l}+L_{f}{ }^{2} \cdot k_{s f r}+L_{r}{ }^{2} \cdot k_{s r l}+L_{r}{ }^{2} \cdot k_{s r r} & L_{f} \cdot k_{s f r} & L_{f} \cdot k_{s f l} & -L_{r} \cdot k_{s r r} & \ldots \\
L_{f} \cdot k_{s f r} & k_{s f r}+k_{t f r} & 0 & 0 & \ldots \\
L_{f} \cdot k_{s f l} & 0 & k_{s f l}+k_{t f l} & 0 & \ldots \\
-L_{r} \cdot k_{s r r} & 0 & 0 & k_{s r r}+k_{t r r} & \ldots \\
-L_{r} \cdot k_{s r l} & 0 & 0 & 0 & \ldots
\end{array}
$$

$$
\left.\begin{array}{c}
-k_{s r l} \tag{2}\\
-\frac{B}{2} \cdot k_{s r l} \\
-L_{r} \cdot k_{s r l} \\
0 \\
0 \\
0 \\
k_{s r l}+k_{t r l}
\end{array}\right]\left[\begin{array}{c}
z_{b} \\
\phi_{b} \\
\theta_{b} \\
z_{w f r} \\
z_{w f l} \\
z_{w r r} \\
z_{w r l}
\end{array}\right]=\left[\begin{array}{c}
F_{d f r}+F_{d f l}+F_{d r r}+F_{d r l} \\
\frac{B}{2}\left(F_{d r l}+F_{d f l}\right)-\frac{B}{2}\left(F_{d r r}+F_{d f r}\right) \\
-L_{f}\left(F_{d f r}+F_{d f l}\right)+L_{r}\left(F_{d r r}+F_{d r l}\right) \\
k_{t f r} \cdot z_{o f r} \\
k_{t f l} \cdot z_{o f l} \\
k_{t r r} \cdot z_{\text {orr }} \\
k_{t r l} \cdot z_{\text {orl }}
\end{array}\right]
$$

III. Road Input and Vehicle Parameters

The road profile used is shown in Fig. 3. The study was conducted at a distance of 1 km with a car speed of $25 \mathrm{~m} / \mathrm{s}$ and a study duration of 40 sec . The delay between the front and rear wheel is calculated as follows:

$$
\begin{equation*}
\Delta t=\frac{\text { L "Wheelbase" }}{\mathrm{U} \text { "Vehicle speed" }} \tag{3}
\end{equation*}
$$

Fig. 3. The road profile
The road roughness coefficient is $3 * 10^{-6}$ for the right track and the left track is 60% of it, this represents a road that is somewhat worse than average main road. The slope of road input is 2.5 [14].

The data used in this work for the full-car model are listed in Table I. These refer to a full-car of large saloon station [13].

TABLE I
VEhicle parameters

Symbol	Description	Units
M_{b}	Body mass	1350 Kg
$\mathrm{M}_{\mathrm{wfr}}$ or $\mathrm{M}_{\mathrm{wfl}}$	Front right or left wheel mass	40.5 Kg
$\mathrm{M}_{\text {wrr }}$ or $\mathrm{M}_{\text {wrl }}$	Rear right or left wheel mass	45.4 Kg
$\mathrm{I}_{\text {by }}$	Pitch moment of inertia	$2400 \mathrm{Kg} . \mathrm{m}^{2}$
I_{bx}	Roll moment of inertia	$400 \mathrm{Kg} . \mathrm{m}^{2}$
$\mathrm{K}_{\text {sfr }}$ or $\mathrm{K}_{\text {sfl }}$	Front right or left spring stiffness	$20000 \mathrm{~N} / \mathrm{m}$
$\mathrm{K}_{\text {srr }}$ or $\mathrm{K}_{\text {srl }}$	Rear right or left spring stiffness	$22000 \mathrm{~N} / \mathrm{m}$
$\mathrm{C}_{\text {sfr }}$ or $\mathrm{C}_{\text {sfl }}$	Front right or left damper coefficient	1600 N.s/m
$\mathrm{C}_{\text {srr }}$ or $\mathrm{C}_{\text {srl }}$	Rear right or left damper coefficient	1800 N.s/m
$\mathrm{K}_{\text {tfr }}$ or $\mathrm{K}_{\text {tl }}$	Front right or left damper coefficient	$190000 \mathrm{~N} / \mathrm{m}$
$\mathrm{K}_{\text {trr }}$ or $\mathrm{K}_{\text {trl }}$	Rear right or left tire spring stiffness	$190000 \mathrm{~N} / \mathrm{m}$
L_{f}	Distance from front axle to c.g.	1.25 m
$\mathrm{L}_{\text {r }}$	Distance from rear axle to c.g.	1.5 m
L	Wheelbase, L	2.75 m
B	Wheel track, B	1.5 m

IV. Control Strategies

1) FLC Model and Rules for SDSS

Fuzzy Simulink model for SDSS is shown in Fig. 4. The fuzzy algorithm deals with sets that have fuzzy boundaries. Fuzzy logic is multi-valued; it deals with degrees of membership and degrees of truth. Also, it deals with nonlinear, uncertain, or imprecise decision-making problems [15]. In this case, the vehicle body velocity and relative velocity between wheels and body are the inputs for the controller, and the control force that represents the damping force is the output. Table II shows the rules used by the Mamdani fuzzy inference system (FIS) for the SDSS. The rules evaluation surface and MFs for the SDSS FLC are shown in Fig. 5 and 6 [16].

Fig. 4. Fuzzy Simulink model for SDSS

TABLE II
7×7 RULE TABLE FOR SDSS

它	Relative Velocity			
		P	Z	N
	P	L	M	S
	Z	M	M	M
	N	S	M	L

Fig. 5. Rules evaluation surface for SDSS

Fig. 6. MFs for the SDSS FLC, (a) Velocity, (b) Acceleration, (c) Damping Force

2) Fuzzy Rules for ASS

Fuzzy Simulink model for ASS is shown in Fig. 7. The FLC approach is applied to the full car model problem using two separate FLC solving two Multi Input Single Output (MISO) system problems, one for the front and the other for the rear. In this case, the vehicle body velocity and acceleration are the inputs for the controller, and the control force that represents the actuator force is the output. Table III shows the rules used by the FIS to take the proper decisions [17] and Fig. 8 representing all rules evaluation probabilities as a surface.

Fig. 7. Fuzzy Simulink model for ASS

TABLE III
3×3 RULE TABLE FOR THE ASS

$\begin{aligned} & \text { N } \\ & \text { en } \\ & 0 \\ & 0 \end{aligned}$	Acceleration			
		P	Z	N
	P	N	N	Z
	Z	N	Z	P
	N	Z	P	P

Fig. 8. Rules evaluation surface for the ASS
The MFs used for the inputs and outputs are shown in Fig. 9. A trapezoidal Membership Functions (MFs) are used as they present a smoother control action and evaluation as proposed by Gandhi [17].

Fig. 9. MFs for the ASS FLC, (a) Velocity, (b) Acceleration, (c) Actuator Force

3) $L Q R$ for $S D S S$

Considering the system under study as a linear timeinvariant system that has a state-space model as follows:

$$
\begin{gather*}
\dot{X}=A \cdot X+B \cdot U+D \cdot W \tag{4}\\
Y=C \cdot X \tag{5}
\end{gather*}
$$

Fig. 10 shows the LQR Simulink model for the SDSS. Taking the state variables as follows:

$$
\begin{align*}
& X=\left[\begin{array}{lllllllll}
\dot{z}_{b f l} & \dot{z}_{b f r} & \dot{z}_{w f l} & \dot{z}_{w f r} & \dot{z}_{b r l} & \dot{z}_{b r r} & \dot{z}_{w r l} & \dot{z}_{w r r} & \text {.. }
\end{array}\right. \\
& \left.\begin{array}{llllllll}
z_{b f l} & z_{b f r} & z_{w f l} & z_{w f r} & z_{b r l} & z_{b r r} & z_{w r l} & z_{w r r}
\end{array}\right]^{\prime} \\
& U=\left[\begin{array}{c}
F_{d f l} \\
F_{d f r} \\
F_{d r l} \\
F_{d r r}
\end{array}\right] \quad(7), \quad W=\left[\begin{array}{c}
Z_{\text {ofl }} \\
Z_{\text {ofr }} \\
Z_{\text {orl }} \\
z_{\text {orr }}
\end{array}\right] \tag{8}
\end{align*}
$$

Fig. 10. LQR Simulink model for SDSS

$\frac{k_{s f l}}{M_{b}}+\frac{l_{f}^{2}}{l_{b y}} \cdot k_{s f l}+\left(\frac{B}{2}\right)^{2} \frac{k_{s f l}}{l_{b x}}$	$\frac{k_{s f r}}{M_{b}}+\frac{l_{f}^{2}}{I_{b y}} \cdot k_{s f r}-\left(\frac{B}{2}\right)^{2} \frac{k_{s f r}}{I_{b x}}$	$-\frac{k_{s r l}}{M_{b}}+\frac{l_{f} l_{r}}{I_{b y}} \cdot k_{s r l}+\left(\frac{B}{2}\right)^{2} \frac{k_{s r l}}{I_{b x}}$
$\frac{k_{s f l}}{M_{b}}+\frac{l_{f}^{2}}{I_{b y}} \cdot k_{s f l}-\left(\frac{B}{2}\right)^{2} \frac{k_{s f l}}{I_{b x}}$	$\frac{k_{s f r}}{M_{b}}+\frac{l_{f^{2}}}{I_{b y}} \cdot k_{s f r}+\left(\frac{B}{2}\right)^{2} \frac{k_{s f r}}{I_{b x}}$	$-\frac{k_{s r l}}{M_{b}}+\frac{l_{f} l_{r}}{I_{b y}} \cdot k_{s r l}-\left(\frac{B}{2}\right)^{2} \frac{k_{s r l}}{I_{b x}}$
$-\frac{k_{s f l}+k_{t f l}}{M_{w f l}}$	0	0
0	$-\frac{k_{s f r}+k_{t f r}}{M_{w f r}}$	0
$\frac{k_{s f l}}{M_{b}}-\frac{l_{f} l_{r}}{I_{b y}} \cdot k_{s f l}+\left(\frac{B}{2}\right)^{2} \frac{k_{s f l}}{I_{b x}}$	$\frac{k_{s f r}}{M_{b}}-\frac{l_{f} l_{r}}{I_{b y}} \cdot k_{s f r}-\left(\frac{B}{2}\right)^{2} \frac{k_{s f r}}{I_{b x}}$	$-\frac{k_{s r l}}{M_{b}}-\frac{l_{r}^{2}}{I_{b y}} \cdot k_{s r l}+\left(\frac{B}{2}\right)^{2} \frac{k_{s r l}}{I_{b x}}$
$\frac{k_{s f l}}{M_{b}}-\frac{l_{f} l_{r}}{I_{b y}} \cdot k_{s f l}-\left(\frac{B}{2}\right)^{2} \frac{k_{s f l}}{I_{b x}}$	$\frac{k_{s f r}}{M_{b}}-\frac{l_{f} l_{r}}{I_{b y}} \cdot k_{s f r}+\left(\frac{B}{2}\right)^{2} \frac{k_{s f r}}{I_{b x}}$	$-\frac{k_{s r l}}{M_{b}}-\frac{l_{r}^{2}}{I_{b y}} \cdot k_{s r l}-\left(\frac{B}{2}\right)^{2} \frac{k_{s r l}}{I_{b x}}$
0	0	$\frac{k_{s r l}}{M_{w r l}}$
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

(10)

$$
D=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\frac{k_{t f l}}{M_{w f l}} & 0 & 0 & 0 \\
0 & \frac{k_{t f r}}{M_{w f r}} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{k_{t r l}}{M_{w r l}} & 0 \\
0 & 0 & 0 & \frac{k_{t r r}}{M_{w r r}} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$K_{-} S D$
$=1 e 3\left[\begin{array}{cccccccccc}1.8758 & 0.742 & -.0003 & .0044 & .7109 & -0.8299 & -0.0182 & 0.0153 & \ldots \\ 0.7413 & 1.8765 & 0.0044 & -0.0003 & -0.8292 & 0.7101 & 0.0153 & -0.0182 & \ldots \\ 0.7580 & -0.6162 & 0.0182 & -0.0175 & 2.2069 & 0.3310 & -0.0389 & 0.0436 & \ldots \\ -0.6162 & 0.7580 & -0.0175 & 0.0182 & 0.3310 & 2.2069 & 0.0436 & -0.0389 & \ldots \\ -0.9345 & 3.2949 & 0.0776 & -0.0757 & 7.0689 & -6.9462 & -0.2428 & 0.2375 \\ 3.2949 & -0.9345 & -0.0757 & 0.0776 & -6.9462 & 7.0689 & 0.2375 & -0.2428 \\ -2.537 & 2.6526 & -0.0612 & 0.053 & 9.5507 & -7.576 & -0.4767 & 0.4776 \\ 2.6526 & -2.537 & 0.0530 & -0.0612 & -7.576 & 9.5507 & 0.4776 & -0.4767\end{array}\right]$
(13)

4) $L Q R$ for $A S S$

Fig. 11 shows the LQR Simulink model for the SDSS.
Taking the state variables as follows:

$$
\begin{array}{ll}
U & W \\
=\left[\begin{array}{c}
F_{d f l} \\
F_{d f r} \\
F_{d r l} \\
F_{d r r}
\end{array}\right] & (15), \quad=\left[\begin{array}{c}
Z_{o f l} \\
z_{o f r} \\
z_{o r l} \\
z_{o r r}
\end{array}\right]
\end{array}
$$

Fig. 11. LQR Simulink model for the ASS

$-\frac{c_{s r l}}{M_{w r l}}$
0
0
0
0
0
0
0
1
0
$\left.\begin{array}{ccc}-\frac{k_{s f r}}{M_{b}}-\frac{l_{f}{ }^{2}}{I_{b y}} \cdot k_{s f r}+\left(\frac{B}{2}\right)^{2} \frac{k_{s f r}}{I_{b x}} & \frac{k_{s f l}}{M_{b}}+\frac{l_{f}{ }^{2}}{I_{b y}} \cdot k_{s f l}+\left(\frac{B}{2}\right)^{2} \frac{k_{s f l}}{I_{b x}} & \frac{k_{s f r}}{M_{b}}+\frac{l_{f}{ }^{2}}{I_{b y}} \cdot k_{s f r}-\left(\frac{B}{2}\right)^{2} \frac{k_{s f r}}{I_{b x}} \\ -\frac{k_{s f r}}{M_{b}}-\frac{l_{f}}{I_{b y}} \cdot k_{s f r}-\left(\frac{B}{2}\right)^{2} \frac{k_{s f r}}{I_{b x}} & \frac{k_{s f l}}{I_{b}}+\frac{l_{f}^{2}}{I_{b y}} \cdot k_{s f l}-\left(\frac{B}{2}\right)^{2} \frac{k_{s f l}}{I_{b x}} & \frac{k_{s f r}}{M_{b}}+\frac{l_{f}^{2}}{I_{b y}} \cdot k_{s f r}+\left(\frac{B}{2}\right)^{2} \frac{k_{s f r}}{I_{b x}}\end{array}\right] . .$.

(18)

$$
D=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{19}\\
0 & 0 & 0 & 0 \\
\frac{k_{t f l}}{M_{w f l}} & 0 & 0 & 0 \\
0 & \frac{k_{t f r}}{M_{w f r}} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{k_{t r l}}{M_{w r l}} & 0 \\
0 & 0 & 0 & \frac{k_{t r r}}{M_{w r r}} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Utilizing LQR function while defining the matrixes Q and R in MATLAB the proper set of gains can be found as follows;

V. Power Calculation

The power losses in the vehicle suspension system, is divided into three elements [16]:

- The fluctuating power in the spring.
- The $\mathrm{P}_{\text {Diss }}$ by the damper or actuator.
- The $P_{\text {Dem }}$ for the actuator.

These power requirements represent the main part of the load on the vehicle's power supply. They can be calculated as follows:

$$
\begin{equation*}
\text { Power }=\text { Force } \times \text { Relative Velocity } \tag{22}
\end{equation*}
$$

The fluctuating powers of the passive spring and tire have not been taken into consideration due to its low importance and impact as, their effect on the power supply is limited to the initial period of acceleration and the results calculated indicated that the differences in RMS values between all the suspension systems are limited [18].

VI. Results

1) Comparison of SDSS with $L Q R$ and FLC strategies in terms of ride performance
The percentage of improvements of body acceleration for SDSS using LQR and FLC strategies over the PSS are shown in Fig. 12. It is clear that, the SDSS with FLC gives better ride comfort compared with SDSS with LQR and PSS. The greatest improvement is gained for body acceleration at front left using the FLC strategy. Fig. 13 compares the power spectral density (PSD) results of LQR and FLC strategies for the SDSS with the PSS results in terms of body acceleration, suspension work space (SWS) and dynamic tire load (DTL).

Fig. 12. Comparison of body accelerations for SDSS with LQR and FLC strategies relative to the PSS.

Fig. 13. PSD Comparison for SDSS with LQR and FLC strategies relative to the PSS.
2) Comparison of ASS with LQR and FLC strategies in terms of ride performance
The body acceleration in terms of RMS for the ASS using FLC strategy compared with the ASS with LQR and PSS are shown in Fig. 14. It is clear that the ASS with FLC gives the best ride comfort compared with ASS with LQR and PSS. These significant improvements are appeared clearly for roll, pitch, front, and rear body accelerations using FLC strategy. Fig. 15 compares the PSD results of LQR and FLC strategies for the ASS with the PSS results in terms of body acceleration, body roll, pitch movement, SWS and DTL.

Fig. 14. Ride comfort improvement of ASS over the PSS using LQR and FLC strategies.

Fig. 15. PSD Comparison for ASS with LQR and FLC strategies relative to the PSS.
3) SDSS and ASS with LQR and FLC strategies

The ride performance criteria for three-setting SDSS and ASS compared with the PSS is shown in Table IV. The results the three-setting SDSSand ASS using LQR and FLC strategies are expressed in terms of the percentage improvements over the PSS. It is clear that the range of the percentage reductions of body acceleration at front left for SDSS and active systems using FLC are 8.2% and 35.3% respectively. The ASS with FLC gives the best ride performance compared with ASS with LQR and three-setting SDSS with FLC and LQR strategies.

TABLE IV
RMS Comparison Between Passive, SD and ASS

	SD LQR	SD Fuzzy	Active LQR	Active Fuzzy
	Improv.	Improv.	Improv.	Improv.
$\mathbf{A}_{\text {bll }}$	6.9%	8.2%	24.4%	35.3%
$\mathbf{A}_{\text {bfr }}$	4.2%	5.3%	23.2%	34.3%
$\mathbf{A}_{\text {brl }}$	4.5%	4.5%	23.0%	40.3%
$\mathbf{A}_{\text {brr }}$	3.5%	4.6%	22.0%	32.7%
$\mathbf{A}_{\mathbf{b}}$	4.8%	7.5%	33.1%	37.6%
$\ddot{\theta}_{\mathbf{b}}$	-4.6%	-1.2%	10.4%	69.4%
$\ddot{\phi}_{\mathbf{b}}$	5.8%	3.0%	9.7%	25.6%
$\mathbf{S W S}_{\mathbf{f l}}$	3.4%	9.9%	12.8%	5.9%
$\mathbf{S W S}_{\mathbf{f r}}$	2.5%	5.4%	-5.2%	-14.2%
$\mathbf{S W S}_{\mathbf{r l}}$	-4.5%	-0.5%	10.1%	3.1%
$\mathbf{S W S}_{\mathbf{r r}}$	-4.1%	-1.9%	-9.9%	-25.0%
$\mathbf{D T L}_{\mathbf{f l}}$	-7.9%	-5.6%	6.9%	2.7%
$\mathbf{D T L}_{\mathbf{f r}}$	-8.4%	-7.9%	4.2%	-4.0%
$\mathbf{D T L}_{\mathbf{r l}}$	-11.5%	-9.0%	11.4%	4.6%
$\mathbf{D T L}_{\mathbf{r r}}$	-13.9%	-13.9%	-2.0%	-10.8%

4) Systems comparisons in terms of power requirement.
a. SDSS with LQR and FLC Strategies

The $P_{\text {Diss }}$ for three-setting SDSS with LQR and FLC strategies are calculated in Table V. Looking first at the $P_{\text {Diss }}$ results showed that the difference between these systems is up to 5% at the front and rear. The $P_{\text {Diss }}$ of
three-setting SDSS for the rear left with LQR and FLC at a vehicle speed of $90 \mathrm{~km} / \mathrm{hr}$, are 109.4 W and 109.2 W , while the $P_{\text {Diss }}$ for the same system at rear right are 231.3 W and 233.9 W respectively. It is clear that the threesetting SDSS with FLC gives better ride performance compared with the same system with LQR. Furthermore, the $P_{\text {Diss }}$ of SDSS with FLC is less by 5% compared with the same system with LQR at the front and rear. This SDSS is an attractive choice as a commercial vehicle suspension system as it is cheaper and simpler in comparison with other ASS.

TABLE V
$P_{\text {Diss }}$ of SDSS with LQR and FLC

$P_{\text {Diss }}$ of SDSS with LQR and FLC		
	SD LQR, Watt	SD Fuzzy, Watt
	Dissipate	Dissipate
Front Left Damper	96.16	94.54
Front Right Damper	250.3	253.7
Rear Left Damper	109.4	109.1
Rear Right Damper	231.3	233.9

Comparison between the time domain of three-setting SDSS with LQR and FLC at the front in terms of $\mathrm{P}_{\text {Diss }}$ using vehicle speed of $90 \mathrm{~km} / \mathrm{hr}$ is shown in Fig. 16. It is clear that the peak values of the SDSS with LQR are higher compared with the SDSS with fuzzy; this is clearly seen in a time range between 1 to 5 seconds. However, this difference is depending on other factors e.g. road surface conditions. The fluctuating powers of the passive spring and tire have not been taken into consideration due to its low importance and impact as, their effect on the power supply is limited to the initial period of acceleration.

Fig. 16. Time histories of the $\mathrm{P}_{\text {Diss }}$ and damping force of the SDSS with LQR and FLC

b. Passive and ASS with LQR and FLC Strategies

The $\overline{\mathrm{P}}_{\text {Dem }}$ calculated assuming (i) that the components are ideal and (ii) that the spring in parallel with the actuator
bears the static vehicle's weight. $\mathrm{P}_{\text {Dem }}$ and $\mathrm{P}_{\text {Diss }}$ of the ASS with LQR and FLC strategy are calculated in Table VI. It is clear that there are a few differences between the front and rear $P_{\text {Dem }}$ for each control strategy used. The $\overline{\mathrm{P}}_{\text {Dem }}$ of ASS for the rear left with LQR and FLC at a vehicle speed of $90 \mathrm{~km} / \mathrm{hr}$, are 25.63 W and 37.34 W , and for rear right are 68.34 W and 104.8 W respectively. However, these values are depending on other factors (e.g. Road surface conditions, road gradient, vehicle speed, and transmission efficiency).

TABLE VI
Power Requirements of ASS with LQR and FLC

	Active LQR		Active Fuzzy	
	Dissipate	Demand	Dissipate	Demand
Front Left Damper	88.55		98.01	
Front Right Damper	231.5	273.6		
Front Left Actuator	28.02	31.87	19.94	35.36
Front Right Actuator	70.89	65.34	55.13	96.56
Rear Left Damper	86.29	218	98.23	
Rear Right Damper	20.54	27.63	20.64	37.34
Rear Left Actuator	55.06	41.55	104.8	
Rear Right Actuator				

Fig. 17 shows the time domain of actuator force, relative velocity, and $P_{\text {Dem }}$ for the ASS. In this figure, it is clear that the peak values are much higher intermittent $P_{\text {Dem }}$ for ASS compared with the mean value in Table VI. This is important from a practical point of view for the actuator system design.

Fig. 17. Time histories of the actuator force, relative velocity, $\mathrm{P}_{\mathrm{Dem}}$ and $\mathrm{P}_{\text {Diss }}$ of the active system

VII. CONCLUSION

Theoretical calculations based on the full-car model for the SDSS and ASS with LQR and FLC strategies have shown the following findings with respect to power requirements and performance.

1. The ASS with FLC offer the best overall performance compared with the ASS with LQR and SDSS with LQR and FLC strategies. However, the ASS involves extremely high costs and considerable practical complexity.
2. The three-setting SDSS with FLC gives better ride performance compared with the same system with LQR. Furthermore, this SDSS with FLC needs small $P_{\text {Dem }}$. This SDSS is an attractive choice as a commercial car suspension system as it is cheaper and simpler in comparison with other ASS.
3. The peak values of $\mathrm{P}_{\mathrm{Dem}}$ for ASS using both strategies are much higher intermittent $\mathrm{P}_{\text {Dem }}$ compared with the mean value. This is important from a practical point of view for the actuator system design.

REFERENCES

[1] Martins, J. Esteves, F. P. da Silva, P. Verdelho, Electromagnetics hybrid active-passive vehicle suspension system, Technical University of Lisbon, Lisbon, Portugal, 2015.
[2] A. M. A. Soliman and Mina M.S. Kaldas " Semi-active Suspension Systems from Research to Mass-market - a Review" Journal of Low Frequency Noise, Vibration and Active Control, 2019.
[3] B. L. J. Gysen, J. L.G. Janssen, Active Electromagnetic Suspension System for Improved Vehicle Dynamics, IEEE Transactions on Vehicular Technology, 59, 3, pp. 1156-1163. 2016.
[4] Mailah, M. and Priyandoko, G., "Simulation of a suspension system with adaptive fuzzy active force
control," Int. J. of Simulation Modelling, vol. 6, pp. 2536, 2007.
[5] A. M. A. Soliman, S. A. Abd Allah, A. A. El-Betar and M. S. Hamed "Effect of suspension spring stiffness on the vehicle dynamics" Heavy Vehicle Systems, A Series of the International Journal of Vehicle Design, Vol. 8, Nos. 3/4, pp 316-334, 2001.
[6] Giliomee C.L., Els P.S."Semi-active hydropnematic spring and damper system", Journal of Terramechanics, No.35, pp.109-117,1998.
[7] Heo S.-J., Park K.and Son S.-H. "modelling of continously variable damper for design of semi-active suspension systems", International Journal of Vehicle Design, Vol.31, No.1, pp.41-53, 2003.
[8] Soliman, A., "Improvement of Vehicle Ride Performance Using a switchable damper Suspension System," SAE Technical Paper 2007-01-0580, 2007..
[9] M. Seong, S. Choi, M. Cho and H. Lee, "Preview Control of Vehicle Suspension System Featuring MR Shock Absorber," Journal of Physics, vol. Conference Series 149, 2009.
[10]A. Soliman and D. Crolla, "Preview control for a semiactive suspension system," Int. J. of Vehicle Design, vol. 17, no. 4, pp. 384 -397, 1996.
[11]Essam, M. Allam, M. A. A. Emam "Investigation of effect of active roll stabilizer system performance on vehicle stability", International Journal of Vehicle Structures \& Systems (IJVSS). Vol. 9, Issue 2, 2017
[12]Mina M. Kaldas, Aref M.A. Soliman, Sayed A. Abdallah and Fomel F. Amien "Robustness Analysis of the Model Reference Control for Active Suspension System" SAE International Journal of Vehicle Dynamics, Stability, and NVH, ISSN: 2380-2162, e-ISSN: 2380-2170, Vol. 4(3), 2020.
[13]A. M. A. Soliman "Adaptive LQR Control Strategy for Active Suspension System", SAE International Congress, Detroit, Michigan, USA, 2011.
[14] S. A. Hassan, "Fundamental studies of passive, active and semi-active automotive suspension systems". University of Leeds, 1986.
[15] L. A. Zadeh, "Fuzzy sets," Inf. Control, vol. 8, no. 3, pp. 338-353, 1965.
[16] Khajavi, Mehrdad N., and Vahid Abdollahi. "Comparison between optimized passive vehicle suspension system and semi active fuzzy logic controlled suspension system regarding ride and handling." In Proceedings of world academy of science, engineering and technology, vol. 21, pp. 57-61. 2007.
[17]Gandhi P., Adarsh S., and Ramachandran,K. I. "Performance Analysis of Half Car Suspension Model with 4 DOF using PID, LQR, FUZZY and ANFIS Controllers," Procedia Comput. Sci., vol. 115, pp. 2-13, 2017.
[18] A. Abouel-Nour, "Active control of vehicle suspension," University of Leeds, 1989.

Notations

A_{b}
Acceleration of the vehicle body at c.g.
$\mathrm{A}_{\mathrm{bfl}}$
$\mathrm{A}_{\mathrm{bfr}}$ A_{br}
DTL $_{\text {rr }} \quad$ Dynamic tire load of the vehicle body at rear right

Acceleration of the vehicle body at front left
Acceleration of the vehicle body at front right
Acceleration of the vehicle body at rear left
Acceleration of the vehicle body at rear right
Wheel track
Center of gravity
Hard setting of the SD
Medium setting of the SD
Soft setting of the SD
Front left damper coefficient
Front right damper coefficient
Rear left damper coefficient
Rear right damper coefficient
Dynamic tire load of the vehicle body at front left
Dynamic tire load of the vehicle body at front right
Dynamic tire load of the vehicle body at rear left

Vector of functions
Firefly algorithm
SD damping force at front left
SD damping force at front right
SD damping force at rear left
SD damping force at rear right
Fuzzy inference system
Active actuator force at front left
Active actuator force at front right
Active actuator force at rear left
Active actuator force at rear right
Pitch moment of inertia
Intelligent fuzzy logic
Front left spring stiffness
Front right spring stiffness
Rear left spring stiffness
Rear right spring stiffness
Front left tire spring stiffness
Front right tire spring stiffness
Rear left tire spring stiffness
Rear right tire spring stiffness
Wheelbase
Distance from the front axle to c.g.
Linear quadratic regulator
Distance from the rear axle to c.g.

Body mass
Membership functions

MISO	Multi input single output	$\mathrm{Z}_{\text {orl }}$	Road profile at rear left
MR	Magneto-rheological	$\mathrm{Z}_{\text {or }}$	Road profile at rear right
$\mathrm{M}_{\text {wfi }}$	Front left wheel mass	Z_{w}	Wheel vertical displacement
$\mathrm{M}_{\text {wfr }}$	Front right wheel mass	$\mathrm{Z}_{\mathrm{wfi}}$	Front left wheel vertical displacement
$\mathrm{M}_{\mathrm{wr} 1}$	Rear left wheel mass	$\mathrm{Z}_{\mathrm{wfr}}$	Front right wheel vertical displacement
$\mathrm{M}_{\text {wir }}$	Rear right wheel mass	Z_{wr}	Rear left wheel vertical displacement
N	Negative error	Z_{wr}	Rear right wheel vertical displacement
NL	Large negative error	$\theta_{\text {b }}$	Pitch angle of vehicle body around c.g.
NM	Medium negative error	$\ddot{\theta}_{\text {b }}$	Pitch acceleration of the vehicle body around c.g.
NS	Small negative error	$\ddot{\phi}_{\text {b }}$	Roll acceleration of the vehicle body around c.g.
P	Positive error		
PID	Proportional integral derivative		
PL	Large positive error		
PM	Medium positive error		
PS	Small positive error		
PSD	Power spectral density		
PSO	Particle swarm optimization		
r.m.s	Root mean square		
SA	Semi-active		
SD	Switchable damper		
$\mathrm{SWS}_{\text {fi }}$	Suspension work space of the vehicle body at front left		
$\mathrm{SWS}_{\mathrm{fr}}$	Suspension work space of the vehicle body at front right		
$\mathrm{SWS}_{\mathrm{rl}}$	Suspension work space of the vehicle body at rear left		
$\mathrm{SWS}_{\mathrm{rr}}$	Suspension work space of the vehicle body at rear right		
$\Delta \mathrm{t}$	Delay between the front and rear wheel		
Td	Time delay of the SD		
$\mathrm{T}_{\text {th }}$	Threshold time of the SD		
U	Vehicle speed		
u_{1}	First input for fuzzy controller		
u_{2}	Second input for fuzzy controller		
x_{b}	Vehicle's body vertical displacement		
$\ddot{\mathrm{x}}_{\text {b }}$	Vehicle's body vertical acceleration		
x_{w}	Wheel vertical displacement		
$\ddot{\mathrm{x}}_{\mathrm{w}}$	Wheel vertical acceleration		
y_{1}	First output of the fuzzy controller		
Z_{b}	Vertical displacement of vehicle body at c.g.		
$\mathrm{Z}_{\text {bil }}$	Vertical displacement of vehicle body at front left		
$\mathrm{Z}_{\text {bfr }}$	Vertical displacement of vehicle body at front right		
$\mathrm{Z}_{\text {br }}$	Vertical displacement of vehicle body at rear left		
$\mathrm{Z}_{\text {br }}$	Vertical displacement of vehicle body at rear right		
Z, ZE	Zero error		
$\mathrm{Z}_{\text {of }}$	Road profile at front left		
$\mathrm{Z}_{\text {ofr }}$	Road profile at front right		

